Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Accurate and computationally-viable representations of clouds and turbulence are a long-standing challenge for climate model development. Traditional parameterizations that crudely but efficiently approximate these processes are a leading source of uncertainty in long-term projected warming and precipitation patterns. Machine Learning (ML)-based parameterizations have long been hailed as a promising alternative with the potential to yield higher accuracy at a fraction of the cost of more explicit simulations. However, these ML variants are often unpredictably unstable and inaccurate in \textit{coupled} testing (i.e. in a downstream hybrid simulation task where they are dynamically interacting with the large-scale climate model). These issues are exacerbated in out-of-distribution climates. Certain design decisions such as ``climate-invariant" feature transformation for moisture inputs, input vector expansion, and temporal history incorporation have been shown to improve coupled performance, but they may be insufficient for coupled out-of-distribution generalization. If feature selection and transformations can inoculate hybrid physics-ML climate models from non-physical, out-of-distribution extrapolation in a changing climate, there is far greater potential in extrapolating from observational data. Otherwise, training on multiple simulated climates becomes an inevitable necessity. While our results show generalization benefits from these design decisions, the obtained improvment does not sufficiently preclude the necessity of using multi-climate simulated training data.more » « lessFree, publicly-accessible full text available December 16, 2025
-
Modern climate projections lack adequate spatial and temporal resolution due to computational constraints. A consequence is inaccurate and imprecise predictions of critical processes such as storms. Hybrid methods that combine physics with machine learning (ML) have introduced a new generation of higher fidelity climate simulators that can sidestep Moore's Law by outsourcing compute-hungry, short, high-resolution simulations to ML emulators. However, this hybrid ML-physics simulation approach requires domain-specific treatment and has been inaccessible to ML experts because of lack of training data and relevant, easy-to-use workflows. We present ClimSim, the largest-ever dataset designed for hybrid ML-physics research. It comprises multi-scale climate simulations, developed by a consortium of climate scientists and ML researchers. It consists of 5.7 billion pairs of multivariate input and output vectors that isolate the influence of locally-nested, high-resolution, high-fidelity physics on a host climate simulator's macro-scale physical state.The dataset is global in coverage, spans multiple years at high sampling frequency, and is designed such that resulting emulators are compatible with downstream coupling into operational climate simulators. We implement a range of deterministic and stochastic regression baselines to highlight the ML challenges and their scoring. The data (https://huggingface.co/datasets/LEAP/ClimSim_high-res) and code (https://leap-stc.github.io/ClimSim) are released openly to support the development of hybrid ML-physics and high-fidelity climate simulations for the benefit of science and society.more » « less
An official website of the United States government

Full Text Available